
Binary Reverse Engineering And Analysis
Course 1: RE in Context

Caragea Radu

February 16, 2021

1 / 19



Bio

Radu Caragea - Sr. Security Researcher at Bitdefender

Binary Analysis and Exploitation, Forensics, Cryptanalysis

Contact: rcaragea@bitdefender.com

2 / 19



About this course (PROs)

Will teach you how to make sense of almost any executable

Will teach you the dangers of code insecurity

Will teach you how to map attack surface and exploit binaries

3 / 19



About this course (CONs)

This course is HARD*

Steep learning curve

You must invest time at home

4 / 19



Prerequisites

Motivation

Python (or learn fast)

C and pointers (able to write a doubly linked list implementation)

Linux CLI

5 / 19



Course Contents

01. Reverse Engineering in Context

02. 64-bit Assembly Crash Course

03. Static Analysis with IDA

04. Dynamic Analysis Using Debuggers

05. Stack Constructs and Corruption

06. (NX/DEP), ASLR, ROP

07. SSP, RELRO, PIE

08. Heap Constructs and Corruption

09. RE for other Programming Languages

10. Further topics on Exploitation

6 / 19



Course Contents

01. Reverse Engineering in Context

02. 64-bit Assembly Crash Course

03. Static Analysis with IDA

04. Dynamic Analysis Using Debuggers

05. Stack Constructs and Corruption

06. (NX/DEP), ASLR, ROP

07. SSP, RELRO, PIE

08. Heap Constructs and Corruption

09. RE for other Programming Languages

10. Further topics on Exploitation

6 / 19



Course Contents

01. Reverse Engineering in Context

02. 64-bit Assembly Crash Course

03. Static Analysis with IDA

04. Dynamic Analysis Using Debuggers

05. Stack Constructs and Corruption

06. (NX/DEP), ASLR, ROP

07. SSP, RELRO, PIE

08. Heap Constructs and Corruption

09. RE for other Programming Languages

10. Further topics on Exploitation
6 / 19



Grading

Course attendance: 1p

Lab solutions sent: 3p (1 week to send in, solutions given after deadline)

Two homework assignments: 2p × 2 = 4p (3 weeks to send in)

Final exam: 4p

Maximum grade: 12p (rounded to 10p)

Minimum pass grade: 4.90p (hard limit)

7 / 19



Register

8 / 19



Why Reverse Engineering?

A few examples:

The online gaming industry

The entertainment/multimedia industry

The anti-malware industry

The cybersecurity industry

Academia/Research

9 / 19



Why Reverse Engineering?

A few examples:

The online gaming industry

The entertainment/multimedia industry

The anti-malware industry

The cybersecurity industry

Academia/Research

9 / 19



Why Reverse Engineering? The Gaming Industry

10 / 19



Why Reverse Engineering? The Online Gaming Industry

11 / 19



Why Reverse Engineering? The Entertainment Industry

12 / 19



Why Reverse Engineering? The Antimalware Industry

13 / 19



Why Reverse Engineering? The 0day ”Industry” (desktop/server)

14 / 19



Why Reverse Engineering? The 0day ”Industry” (mobile)

15 / 19



How to RE? Methodology

First, you need an executable (ideally one you can run)

Ultimately, all CPU instructions are contained in it

Method 1 - exhaustively analyze the machine code (what ends up in the CPU)

Method 2 - follow along the execution paths to see how it works

Method 3 - watch its behaviour from outside and interactions (with the OS)

16 / 19



How to RE? Methodology

First, you need an executable (ideally one you can run)

Ultimately, all CPU instructions are contained in it

Method 1 - exhaustively analyze the machine code (what ends up in the CPU)

Method 2 - follow along the execution paths to see how it works

Method 3 - watch its behaviour from outside and interactions (with the OS)

16 / 19



How to RE? Methodology

First, you need an executable (ideally one you can run)

Ultimately, all CPU instructions are contained in it

Method 1 - exhaustively analyze the machine code (what ends up in the CPU)

Method 2 - follow along the execution paths to see how it works

Method 3 - watch its behaviour from outside and interactions (with the OS)

16 / 19



How to RE? Methodology

First, you need an executable (ideally one you can run)

Ultimately, all CPU instructions are contained in it

Method 1 - exhaustively analyze the machine code (what ends up in the CPU)

Method 2 - follow along the execution paths to see how it works

Method 3 - watch its behaviour from outside and interactions (with the OS)

16 / 19



Method 3 a.k.a. Black Box Analysis

Investigate the system call/library call surface

Windows tools:

ProcMon (SysInternals)
API Monitor

Linux tools:

strace (syscalls)
ltrace (library calls)

17 / 19



References

https://www.velvetjobs.com/job-posting/

anti-cheat-software-engineer-250735

mcvuk.com/development/

defending-online-games-from-piracy-cheating-and-fraud

androidpolice.com/2019/01/02/

googles-widevine-l3-drm-used-by-netflix-hulu-and-hbo-has-been-broken

https://zerodium.com/program.html

18 / 19

https://www.velvetjobs.com/job-posting/anti-cheat-software-engineer-250735
https://www.velvetjobs.com/job-posting/anti-cheat-software-engineer-250735
mcvuk.com/development/defending-online-games-from-piracy-cheating-and-fraud
mcvuk.com/development/defending-online-games-from-piracy-cheating-and-fraud
androidpolice.com/2019/01/02/googles-widevine-l3-drm-used-by-netflix-hulu-and-hbo-has-been-broken
androidpolice.com/2019/01/02/googles-widevine-l3-drm-used-by-netflix-hulu-and-hbo-has-been-broken
https://zerodium.com/program.html


Practice

Any Questions?

Start lab tasks

https://pwnthybytes.ro/unibuc_re/01-lab.html

19 / 19

https://pwnthybytes.ro/unibuc_re/01-lab.html

