
Binary Reverse Engineering And Analysis
Course 2: Assembly

Caragea Radu

February 23, 2021

1 / 21



Recap

Black-box analysis: figure out only from external interactions

White-box analysis: exhaustively cover the binary

Gray-box analysis: middle ground

Today we start learning concepts for white-box analysis

2 / 21



Recap

Black-box analysis: figure out only from external interactions

White-box analysis: exhaustively cover the binary

Gray-box analysis: middle ground

Today we start learning concepts for white-box analysis

2 / 21



Executables

Most executables (ELF/SO, PE/DLL, WASM) have structure

Based on generic computer science concepts

Multiple sections/segments:

Text section (text == readable by the CPU)
Read-only Data section/Read-Write Data Section
Relocations/Compiler Stubs

However...

3 / 21



Executables

4 / 21



CPU functionality

The CPU consumes code and produces effects
The consumed code is in binary form (machine code)

5 / 21



CPU functionality

Machine code can be unequivocally translated to readable assembly code
In assembly form, it can be ”interpreted” by the human brain
For efficiency, it is organized into blocks, subroutines, functions, libraries, etc

6 / 21



Assembly pro/cons

Pro: Produces faster code (in theory)

Pro: Very-fine grained control (a.k.a. ”I know what I’m doing”)

Pro: Educational purpose (give the compiler more hints)

Con: Takes more time, compiler usually knows better than you (in practice)

Con: Need to be frugal w.r.t. variables (limited register count)

Con: Easy to make non-maintainable spaghetti code

7 / 21



Assembly pro/cons

Pro: Produces faster code (in theory)

Pro: Very-fine grained control (a.k.a. ”I know what I’m doing”)

Pro: Educational purpose (give the compiler more hints)

Con: Takes more time, compiler usually knows better than you (in practice)

Con: Need to be frugal w.r.t. variables (limited register count)

Con: Easy to make non-maintainable spaghetti code

7 / 21



Assembly pro/cons

Pro: Produces faster code (in theory)

Pro: Very-fine grained control (a.k.a. ”I know what I’m doing”)

Pro: Educational purpose (give the compiler more hints)

Con: Takes more time, compiler usually knows better than you (in practice)

Con: Need to be frugal w.r.t. variables (limited register count)

Con: Easy to make non-maintainable spaghetti code

7 / 21



Assembly pro/cons

Pro: Produces faster code (in theory)

Pro: Very-fine grained control (a.k.a. ”I know what I’m doing”)

Pro: Educational purpose (give the compiler more hints)

Con: Takes more time, compiler usually knows better than you (in practice)

Con: Need to be frugal w.r.t. variables (limited register count)

Con: Easy to make non-maintainable spaghetti code

7 / 21



Assembly pro/cons

Pro: Produces faster code (in theory)

Pro: Very-fine grained control (a.k.a. ”I know what I’m doing”)

Pro: Educational purpose (give the compiler more hints)

Con: Takes more time, compiler usually knows better than you (in practice)

Con: Need to be frugal w.r.t. variables (limited register count)

Con: Easy to make non-maintainable spaghetti code

7 / 21



CPU registers

A (finite) set of internal variables

Some are general purpose (GP)

Some are usually (but not always) used by the compiler in certain situations

Some are always used for a specific purpose (instruction pointer, stack register)

8 / 21



x86-64 registers

RIP: Instruction Pointer

RSP: Stack Pointer; RBP: Base Pointer (usually GP)
R[A,B,C,D]X: GP; RCX (affinity in loop counters)
RDI, RSI: usually GP (affinity in string ops, copy ops)
Divisions: BYTE (AL), WORD (AX), DWORD (EAX), QWORD (RAX)

9 / 21



x86-64 registers

RIP: Instruction Pointer
RSP: Stack Pointer; RBP: Base Pointer (usually GP)

R[A,B,C,D]X: GP; RCX (affinity in loop counters)
RDI, RSI: usually GP (affinity in string ops, copy ops)
Divisions: BYTE (AL), WORD (AX), DWORD (EAX), QWORD (RAX)

9 / 21



x86-64 registers

RIP: Instruction Pointer
RSP: Stack Pointer; RBP: Base Pointer (usually GP)
R[A,B,C,D]X: GP; RCX (affinity in loop counters)

RDI, RSI: usually GP (affinity in string ops, copy ops)
Divisions: BYTE (AL), WORD (AX), DWORD (EAX), QWORD (RAX)

9 / 21



x86-64 registers

RIP: Instruction Pointer
RSP: Stack Pointer; RBP: Base Pointer (usually GP)
R[A,B,C,D]X: GP; RCX (affinity in loop counters)
RDI, RSI: usually GP (affinity in string ops, copy ops)

Divisions: BYTE (AL), WORD (AX), DWORD (EAX), QWORD (RAX)

9 / 21



x86-64 registers

RIP: Instruction Pointer
RSP: Stack Pointer; RBP: Base Pointer (usually GP)
R[A,B,C,D]X: GP; RCX (affinity in loop counters)
RDI, RSI: usually GP (affinity in string ops, copy ops)
Divisions: BYTE (AL), WORD (AX), DWORD (EAX), QWORD (RAX)

9 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: arithmetic/logic

MOV RAX, 2021 ; rax = 2021

SUB RAX, RDX ; rax -= rdx

AND RCX, RBX ; rcx &= rbx

SHL RAX, 10 ; rax <<= 10

SHR RAX, 10 ; rax >>= 10 (sign bit not preserved)

SAR RAX, 10 ; rax >>= 10 (sign bit preserved)

IMUL RAX, RCX ; rax = rax * rcx

IMUL RCX ; <rdx:rax> = rax * rcx (128 bit mul)

XOR RAX, RAX ; rax ^= rax

LEA RCX, [RAX * 8 + RBX] ; rcx = rax * 8 + rbx

10 / 21



x86-64 instructions: memory

MOV RAX, QWORD PTR [0x123456] ; rax = *(int64_t*) 0x123456

MOV QWORD PTR [0x123456], RAX ; *(int64_t*) 0x123456 = rax

MOV EAX, DWORD PTR [0x123456] ; rax = *(int32_t*) 0x123456

MOV AL, BYTE PTR [0x123456] ; al = *(int8_t*) 0x123456

11 / 21



x86-64 instructions: memory

MOV RAX, QWORD PTR [0x123456] ; rax = *(int64_t*) 0x123456

MOV QWORD PTR [0x123456], RAX ; *(int64_t*) 0x123456 = rax

MOV EAX, DWORD PTR [0x123456] ; rax = *(int32_t*) 0x123456

MOV AL, BYTE PTR [0x123456] ; al = *(int8_t*) 0x123456

11 / 21



x86-64 instructions: control flow

JMP 0x1234 ; rip = 0x1234

JMP [RAX] ; rip = *(int64_t) rax

JZ/JE 0xABCD ; if (zf) rip = 0xabcd

JNZ/JNE 0xABCD ; if (!zf) rip = 0xabcd

12 / 21



x86-64 instructions: control flow

JMP 0x1234 ; rip = 0x1234

JMP [RAX] ; rip = *(int64_t) rax

JZ/JE 0xABCD ; if (zf) rip = 0xabcd

JNZ/JNE 0xABCD ; if (!zf) rip = 0xabcd

12 / 21



x86-64 flag register

EFLAGS:

(carry parity adjust zero sign trap interrupt direction overflow)

Carry flag: Addition, Subtraction

Zero flag: Last operation result was 0

Sign flag: Last operation result was < 0

Overflow: Last operation result was > 2register bitcount

13 / 21



x86-64 flag instructions

TEST RAX, RBX ; _ = rax & rbx; set SF, ZF, PF

; useful when checking for null vals

; and bit masks

CMP RAX, RBX ; _ = rax - rbx

; arithmetic comparisons

14 / 21



x86-64 instructions: stack raison d’etre

In practice, we cannot use only 16 registers for all variables
In practice, we cannot use only JMP for function calls

To this end, each program is given a slab of blank memory called the stack
How to use it efficiently?

15 / 21



x86-64 instructions: stack raison d’etre

In practice, we cannot use only 16 registers for all variables
In practice, we cannot use only JMP for function calls
To this end, each program is given a slab of blank memory called the stack
How to use it efficiently?

15 / 21



x86-64 instructions: stack micro-operations

PUSH RAX ; rsp -= 8; *(int64_t*)rsp = rax;

POP RAX ; rax = *(int64_t*)rsp; rsp += 8

CALL 0x12345 ; PUSH RIP; JMP 0x12345

RET ; POP RIP

16 / 21



x86-64 instructions: stack micro-operations

PUSH RAX ; rsp -= 8; *(int64_t*)rsp = rax;

POP RAX ; rax = *(int64_t*)rsp; rsp += 8

CALL 0x12345 ; PUSH RIP; JMP 0x12345

RET ; POP RIP

16 / 21



x86-64 instructions: stack micro-operations

PUSH RAX ; rsp -= 8; *(int64_t*)rsp = rax;

POP RAX ; rax = *(int64_t*)rsp; rsp += 8

CALL 0x12345 ; PUSH RIP; JMP 0x12345

RET ; POP RIP

16 / 21



x86-64 instructions: stack macro-operations

PUSH RBP ; save previous frame base

MOV RBP, RSP ; move frame base to current top

SUB RSP, 100 ; allocate 100 bytes on the stack

; "push new stack frame"

MOV RBX, [RBP - 0x20] ; rbx = *(int64_t*)(rbp-0x20)

; use the allocated space for storage

LEAVE ; MOV RSP, RBP ; POP RBP

; "pop current stack frame"

17 / 21



x86-64 instructions: stack macro-operations

PUSH RBP ; save previous frame base

MOV RBP, RSP ; move frame base to current top

SUB RSP, 100 ; allocate 100 bytes on the stack

; "push new stack frame"

MOV RBX, [RBP - 0x20] ; rbx = *(int64_t*)(rbp-0x20)

; use the allocated space for storage

LEAVE ; MOV RSP, RBP ; POP RBP

; "pop current stack frame"

17 / 21



x86-64 instructions: stack macro-operations

PUSH RBP ; save previous frame base

MOV RBP, RSP ; move frame base to current top

SUB RSP, 100 ; allocate 100 bytes on the stack

; "push new stack frame"

MOV RBX, [RBP - 0x20] ; rbx = *(int64_t*)(rbp-0x20)

; use the allocated space for storage

LEAVE ; MOV RSP, RBP ; POP RBP

; "pop current stack frame"

17 / 21



x86-64 instructions: conventions

In order to use software modules (libraries, objects, etc) a standard must be set.
Why?

How do you pass parameters to external functions? Memory? Stack? Registers?

Calling conventions are used: cdecl, stdcall, fastcall.

On 32 bit systems, parameters are passed on the stack, return in EAX

On 64 bit systems, parameters are passed using registers, return in RAX

Memorize this: ‘RDI, RSI, RDX, RCX, R8, R9 (Linux)‘

18 / 21



x86-64 instructions: conventions

In order to use software modules (libraries, objects, etc) a standard must be set.
Why?

How do you pass parameters to external functions? Memory? Stack? Registers?

Calling conventions are used: cdecl, stdcall, fastcall.

On 32 bit systems, parameters are passed on the stack, return in EAX

On 64 bit systems, parameters are passed using registers, return in RAX

Memorize this: ‘RDI, RSI, RDX, RCX, R8, R9 (Linux)‘

18 / 21



x86-64 instructions: conventions

In order to use software modules (libraries, objects, etc) a standard must be set.
Why?

How do you pass parameters to external functions? Memory? Stack? Registers?

Calling conventions are used: cdecl, stdcall, fastcall.

On 32 bit systems, parameters are passed on the stack, return in EAX

On 64 bit systems, parameters are passed using registers, return in RAX

Memorize this: ‘RDI, RSI, RDX, RCX, R8, R9 (Linux)‘

18 / 21



x86-64 instructions: syscalls

In order to cross the application - OS limit, syscalls are needed

File operations: read/write/close/open/create/remove

Sleep, Select, Yield, Fork, Kill, GetTime

Allocate/Release Memory

Socket/Networking Operations

IPC communication

MOV RAX, 0x2 ; Choose syscall number 2 (open)

MOV RDI, [RSP + 0x10] ; Set first argument to some stack value

SYSCALL ; Invoke kernel functionality

19 / 21



What you need to know

As a RE, writing ASM code by hand is not needed very often

Reading ASM code is maybe 10% of the work

However, knowing the basics is absolutely crucial and can be learned fast

20 / 21



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/02-lab.html

21 / 21

http://pwnthybytes.ro/unibuc_re/02-lab.html

