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Recap

Last time: assembly, no ”context”

Today we put machine code into context:

Executable File Formats
Rudimentary tools
Advanced tools
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Executables

Most executables (ELF/SO, PE/DLL, WASM) have structure

Based on generic computer science concepts

Multiple sections/segments:

Text section (text == readable by the CPU)
Read-only Data section/Read-Write Data Section
Relocations/Compiler Stubs

3 / 25



Linux binary format overview

View 1: by interpreters (using the program header)
View 2: by linkers (using the section header)
https://github.com/corkami/pics/raw/master/binary/ELF101.png
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Linux binary format tools (rudimentary)

readelf - interpret the file format structures

objdump - disassemble the code in the text sections

nm - list symbols

DEMO time!

5 / 25



Windows binary format overview

https://github.com/corkami/pics/raw/master/binary/PE101.png
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Windows binary format tools

CFF Explorer / PE Studio - full structure interpretation

PE bear - similar functionality

DEMO time!
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State-of-the-art Analysis Tools

IDA Pro + Hex-Rays

Ghidra

Others: radare, retdec, jeb

8 / 25



Ghidra

Open-sourced NSA tool

Pro: free and hackable

Pro: decompiles anything it can disassemble

Con: looks horrible (UI/UX skills zero)

Con: sometimes the decompilation is impossible to follow

Prefers gotos (no for loop support)
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IDA: Interactive Disassembler

Swiss army knife of Reverse Engineering

Pro: Tried and tested

Pro: Analyze most executable file formats

Pro: Disassemble most architectures (x86, arm, mips, z80, etc)

Pro: Decompile some architectures (x86/amd64, arm/arm64, ppc/ppc64, mips32)

Con: Too expensive

Con: Piracy is rampant
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IDA showcase 1/4

Go from this:
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IDA showcase 2/4

To this:
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IDA showcase 3/4

To this:
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IDA showcase 4/4

To this:
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IDA strengths: interactivity

You can rename functions, variables, create structs, etc
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IDA strengths: reconstruction

Program function reconstruction

16 / 25



IDA strengths: recognition

Library function recognition by signatures
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Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code
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Demo 1

Simple ”Hello world” in Linux

Format: ELF with debugging symbols

Notice:

Binary organization: code, data, relocations
IDA features: tabs, disassembly, graph view, navbar, xrefs, decompilation, symbols
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Demo 2

Simple ”Hello world” in Windows

Format: PE without debugging symbols (VS2015/release)

Notice:

Binary organization: code, data, relocations
IDA features: xrefs, renaming
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Demo 3

Binary from Lab 01

Format: ELF without debugging symbols

Notice:

IDA features: data reconstruction
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Demo 4

A deceptive binary

Format: ELF without debugging symbols

Notice:

IDA decompiler pitfalls
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Demo 5

An adversarial binary

Format: ELF without debugging symbols

Notice:

IDA decompiler limitations
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Other adversarial methods

Anti-disassembly, anti-decompilation

Anti-debugging, Anti-VM

Packers, encrypters, corrupters, obfuscators

Demo UPX
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Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/03-lab.html
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