
Binary Reverse Engineering And Analysis
Course 3: Static Analysis

Caragea Radu

Last update: 02 March 2021

1 / 25



Recap

Last time: assembly, no ”context”

Today we put machine code into context:

Executable File Formats
Rudimentary tools
Advanced tools

2 / 25



Executables

Most executables (ELF/SO, PE/DLL, WASM) have structure

Based on generic computer science concepts

Multiple sections/segments:

Text section (text == readable by the CPU)
Read-only Data section/Read-Write Data Section
Relocations/Compiler Stubs

3 / 25



Linux binary format overview

View 1: by interpreters (using the program header)
View 2: by linkers (using the section header)
https://github.com/corkami/pics/raw/master/binary/ELF101.png

https://ide.kaitai.io 4 / 25

https://github.com/corkami/pics/raw/master/binary/ELF101.png
https://ide.kaitai.io


Linux binary format tools (rudimentary)

readelf - interpret the file format structures

objdump - disassemble the code in the text sections

nm - list symbols

DEMO time!

5 / 25



Windows binary format overview

https://github.com/corkami/pics/raw/master/binary/PE101.png

https://ide.kaitai.io
6 / 25

https://github.com/corkami/pics/raw/master/binary/PE101.png
https://ide.kaitai.io


Windows binary format tools

CFF Explorer / PE Studio - full structure interpretation

PE bear - similar functionality

DEMO time!

7 / 25



State-of-the-art Analysis Tools

IDA Pro + Hex-Rays

Ghidra

Others: radare, retdec, jeb

8 / 25



Ghidra

Open-sourced NSA tool

Pro: free and hackable

Pro: decompiles anything it can disassemble

Con: looks horrible (UI/UX skills zero)

Con: sometimes the decompilation is impossible to follow

Prefers gotos (no for loop support)

9 / 25



IDA: Interactive Disassembler

Swiss army knife of Reverse Engineering

Pro: Tried and tested

Pro: Analyze most executable file formats

Pro: Disassemble most architectures (x86, arm, mips, z80, etc)

Pro: Decompile some architectures (x86/amd64, arm/arm64, ppc/ppc64, mips32)

Con: Too expensive

Con: Piracy is rampant

10 / 25



IDA showcase 1/4

Go from this:

11 / 25



IDA showcase 2/4

To this:

12 / 25



IDA showcase 3/4

To this:

13 / 25



IDA showcase 4/4

To this:

14 / 25



IDA strengths: interactivity

You can rename functions, variables, create structs, etc

15 / 25



IDA strengths: reconstruction

Program function reconstruction

16 / 25



IDA strengths: recognition

Library function recognition by signatures

17 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Typical workflow in static analysis

Open the file, wait for the auto-analysis heuristics

Identify entry point (e.g. main() function), start from there

DFS or BFS manual parsing of functions (top-down)

Or start from leafs (bottom-up) and guess based on context

Reconstruct: functionality, variable names, function names

Replace C/ASM blocks with descriptive text/comments

Ultimately, reconstruct comprehensible C code

18 / 25



Demo 1

Simple ”Hello world” in Linux

Format: ELF with debugging symbols

Notice:

Binary organization: code, data, relocations
IDA features: tabs, disassembly, graph view, navbar, xrefs, decompilation, symbols

19 / 25



Demo 2

Simple ”Hello world” in Windows

Format: PE without debugging symbols (VS2015/release)

Notice:

Binary organization: code, data, relocations
IDA features: xrefs, renaming

20 / 25



Demo 3

Binary from Lab 01

Format: ELF without debugging symbols

Notice:

IDA features: data reconstruction

21 / 25



Demo 4

A deceptive binary

Format: ELF without debugging symbols

Notice:

IDA decompiler pitfalls

22 / 25



Demo 5

An adversarial binary

Format: ELF without debugging symbols

Notice:

IDA decompiler limitations

23 / 25



Other adversarial methods

Anti-disassembly, anti-decompilation

Anti-debugging, Anti-VM

Packers, encrypters, corrupters, obfuscators

Demo UPX

24 / 25



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/03-lab.html

25 / 25

http://pwnthybytes.ro/unibuc_re/03-lab.html

