
Binary Reverse Engineering And Analysis
Course 4: Dynamic Analysis

Caragea Radu

March 9, 2021

1 / 20



Recap

Last time: dissecting executables

Today we study ”moving targets”

From executable to process
Tracing unknown binaries
Modifying control flow

2 / 20



But... why?

Can drastically reduce static analysis time

Can uncover subtle vulnerabilities inside/outside the code

Can uncover vulnerabilities unrelated to the actual code (!)

3 / 20



Example 1: side-channels

More info: https://m.tau.ac.il/~tromer/acoustic

4 / 20

https://m.tau.ac.il/~tromer/acoustic


Example 2: disappearing security measures (before)

https://godbolt.org/z/QMZxYe

5 / 20

https://godbolt.org/z/QMZxYe


Example 2: disappearing security measures (after)

https://godbolt.org/z/3EyZXQ

6 / 20

https://godbolt.org/z/3EyZXQ


Executables

Start as files on the filesystem

As seen last time, executables carry loading information

But what happens when we run the executable?

7 / 20



OS Kernel

Provides a separate address space from other processes

Provides randomization where compatible (TBD)

Provides expandable stack space, heap space

Passes control to a suitable loader (interpreter)

8 / 20



Loaders

Parse the file structure

Copy segment contents into memory

Expand sparse segments

Set adequate permissions to each segment

Do the same for any linked libraries needed

Pass control to the address specified in the header

9 / 20



Linux Address Space Layout (1/2)

Static Executable

10 / 20



Linux Address Space Layout (2/2)

Dynamic Executable

11 / 20



Windows Address Space Layout

12 / 20



How do processes inter-communicate?

Shared memory

Message queues

Pipes

Sockets

Synchronization

Direct access (used by debugging processes)

13 / 20



How do processes inter-communicate?

Shared memory

Message queues

Pipes

Sockets

Synchronization

Direct access (used by debugging processes)

13 / 20



How do processes inter-communicate?

Shared memory

Message queues

Pipes

Sockets

Synchronization

Direct access (used by debugging processes)

13 / 20



Linux debug methods (ptrace syscall)

Attach to a process (called tracee)

Read/write memory from tracee

Read/write CPU registers from tracee

Single step (one CPU instruction at a time)

Start/stop/continue execution

Handle breakpoints

14 / 20



Linux low-level debugging

Debuggers mainly use ptrace
We study GDB plus a plugin (PEDA)

15 / 20



Windows debug methods (separate syscalls)

Attach to a process (OpenProcess)

Read/write memory from tracee (ReadProcessMemory/WriteProcessMemory)

Read/write CPU registers from tracee (GetThreadContext)

Start/stop/continue execution (DebugBreakProcess)

Handle breakpoints (WaitForDebugEvent/ContinueDebugEvent)

16 / 20



Windows low-level debugging

Windbg is the most powerful but hard to learn
X64dbg is a decent debugger handling 32/64

17 / 20



Fundamental tasks in a debugger wrt RE

Interrupt (break) execution at a certain point in the code

Inspect/modify virtual memory state/contents

Inspect/modify CPU registers

Analyze the call stack

18 / 20



Alternatives

Processes can also be instrumented

Intel PIN (Linux/Windows)

Add extra code in the same address space

More power, harder to detect, more complexity

19 / 20



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/04-lab.html

20 / 20

http://pwnthybytes.ro/unibuc_re/04-lab.html

