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Recap

Last time we studied basic stack exploits

The main idea was to hijack execution

The destination was still in the target binary

Today: construct new pathways in a program

2 / 29



Linux address space (in the olden times)

Retaddr corruption is possible => anything in std lib can be called! DEMO

How can we mitigate this?
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ELF memory space (1/3)
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ELF memory space (2/3) + demo
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ELF memory space (3/3)
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ASLR disabled (1/3)
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ASLR enabled (2/3)
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ASLR enabled (3/3)
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ASLR info

All maps randomized (except main exe)

Recently, main exe also randomized

Linux: ASLR system-wide

Windows: ASLR system-wide (with a catch)
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Implementation by the compiler

How does an executable know where the libraries reside?

On Linux, loader copies pointers to imported functions in a section called .GOT

On Windows, the loader simply overwrites wherever a function is called (fixup)
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The end of (usefulness for) Buffer overflows?

In full RCE exploits we want to call system("/bin/sh") to open a remote shell

Most programs do not call ”system”

Address of libc (and thus ”system” ) is randomized

We are ”contained” within the program functionality

Can this protection be bypassed?

Of course! But it’s pretty tricky.
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Buffer overflow: no corruption
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Buffer overflow: calling one function
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Buffer overflow: calling more functions
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Buffer overflow: calling... nothing
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Why?

The CPU basically executes: ”ret; ret; ret”

Similar to a program with only NOPs

How would the following piece of code be useful?

...

0x401c55: POP RBX

0x401c56: RET
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ROP

Code reuse at a finer level

Benign pieces of code reused: gadgets

Does not assume code modification (shellcode)

18 / 29



Function call convention (Linux)

Params: RDI, RSI, RDX, RCX, R8, R9

Ret: RAX

Reconstruct parameter passing using ROP gadgets

...

0x401aef: POP RDI

0x401af0: RET

...

0x40231c: POP RSI

0x40231d: RET

...
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Example ROP chain

ADDR + 0x00 => 0x401aef (POP RDI ; RET)

ADDR + 0x08 => 0x406020 "%s"

ADDR + 0x10 => 0x40145a (POP RSI; RET)

ADDR + 0x18 => 0x12345

ADDR + 0x20 => 0x401508 (__isoc99_scanf@plt)

Arbitrary read into address 0x12345
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ROP usefulness

Extra degrees of freedom

Reuse functions and bits of functions in a more clever way

Execute multi-stage exploits
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So how does the ASLR bypass work?

Now we can ”program” in terms of reusing the code

In a previous slide we show how to arbitrarily read into an address

Consider the following pseudo-program written in ROP:

call puts to leak memory (obtain the loader pointers)

call main again

We have information regarding the randomness

ASLR is defeated!
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Information leak alternatives

The larger the systems/programs the more vulnerabilities

Find and use another weaker vulnerability to gain info

Here’s an example

Source: https://twitter.com/0xRaindrop/status/864704956116254720
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FSB step 1: change phone name
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FSB step 2: pair BMW with phone
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FSB step 3: profit
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FSB example 2
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FSB example 3
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Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/06-lab.html
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