
Binary Reverse Engineering And Analysis
Course 6: ASLR and ROP

Caragea Radu

March 23, 2021

1 / 29



Recap

Last time we studied basic stack exploits

The main idea was to hijack execution

The destination was still in the target binary

Today: construct new pathways in a program

2 / 29



Linux address space (in the olden times)

Retaddr corruption is possible => anything in std lib can be called! DEMO

How can we mitigate this?

3 / 29



Linux address space (in the olden times)

Retaddr corruption is possible => anything in std lib can be called! DEMO
How can we mitigate this?

3 / 29



ELF memory space (1/3)

4 / 29



ELF memory space (2/3) + demo

5 / 29



ELF memory space (3/3)

6 / 29



ASLR disabled (1/3)

7 / 29



ASLR enabled (2/3)

8 / 29



ASLR enabled (3/3)

9 / 29



ASLR info

All maps randomized (except main exe)

Recently, main exe also randomized

Linux: ASLR system-wide

Windows: ASLR system-wide (with a catch)

10 / 29



Implementation by the compiler

How does an executable know where the libraries reside?

On Linux, loader copies pointers to imported functions in a section called .GOT

On Windows, the loader simply overwrites wherever a function is called (fixup)

11 / 29



Implementation by the compiler

How does an executable know where the libraries reside?

On Linux, loader copies pointers to imported functions in a section called .GOT

On Windows, the loader simply overwrites wherever a function is called (fixup)

11 / 29



The end of (usefulness for) Buffer overflows?

In full RCE exploits we want to call system("/bin/sh") to open a remote shell

Most programs do not call ”system”

Address of libc (and thus ”system” ) is randomized

We are ”contained” within the program functionality

Can this protection be bypassed?

Of course! But it’s pretty tricky.

12 / 29



The end of (usefulness for) Buffer overflows?

In full RCE exploits we want to call system("/bin/sh") to open a remote shell

Most programs do not call ”system”

Address of libc (and thus ”system” ) is randomized

We are ”contained” within the program functionality

Can this protection be bypassed?

Of course! But it’s pretty tricky.

12 / 29



Buffer overflow: no corruption

13 / 29



Buffer overflow: calling one function

14 / 29



Buffer overflow: calling more functions

15 / 29



Buffer overflow: calling... nothing

16 / 29



Why?

The CPU basically executes: ”ret; ret; ret”

Similar to a program with only NOPs

How would the following piece of code be useful?

...

0x401c55: POP RBX

0x401c56: RET

17 / 29



Why?

The CPU basically executes: ”ret; ret; ret”

Similar to a program with only NOPs

How would the following piece of code be useful?

...

0x401c55: POP RBX

0x401c56: RET

17 / 29



ROP

Code reuse at a finer level

Benign pieces of code reused: gadgets

Does not assume code modification (shellcode)

18 / 29



Function call convention (Linux)

Params: RDI, RSI, RDX, RCX, R8, R9

Ret: RAX

Reconstruct parameter passing using ROP gadgets

...

0x401aef: POP RDI

0x401af0: RET

...

0x40231c: POP RSI

0x40231d: RET

...

19 / 29



Function call convention (Linux)

Params: RDI, RSI, RDX, RCX, R8, R9

Ret: RAX

Reconstruct parameter passing using ROP gadgets

...

0x401aef: POP RDI

0x401af0: RET

...

0x40231c: POP RSI

0x40231d: RET

...

19 / 29



Example ROP chain

ADDR + 0x00 => 0x401aef (POP RDI ; RET)

ADDR + 0x08 => 0x406020 "%s"

ADDR + 0x10 => 0x40145a (POP RSI; RET)

ADDR + 0x18 => 0x12345

ADDR + 0x20 => 0x401508 (__isoc99_scanf@plt)

Arbitrary read into address 0x12345

20 / 29



Example ROP chain

ADDR + 0x00 => 0x401aef (POP RDI ; RET)

ADDR + 0x08 => 0x406020 "%s"

ADDR + 0x10 => 0x40145a (POP RSI; RET)

ADDR + 0x18 => 0x12345

ADDR + 0x20 => 0x401508 (__isoc99_scanf@plt)

Arbitrary read into address 0x12345

20 / 29



ROP usefulness

Extra degrees of freedom

Reuse functions and bits of functions in a more clever way

Execute multi-stage exploits

21 / 29



So how does the ASLR bypass work?

Now we can ”program” in terms of reusing the code

In a previous slide we show how to arbitrarily read into an address

Consider the following pseudo-program written in ROP:

call puts to leak memory (obtain the loader pointers)

call main again

We have information regarding the randomness

ASLR is defeated!

22 / 29



So how does the ASLR bypass work?

Now we can ”program” in terms of reusing the code

In a previous slide we show how to arbitrarily read into an address

Consider the following pseudo-program written in ROP:

call puts to leak memory (obtain the loader pointers)

call main again

We have information regarding the randomness

ASLR is defeated!

22 / 29



Information leak alternatives

The larger the systems/programs the more vulnerabilities

Find and use another weaker vulnerability to gain info

Here’s an example

Source: https://twitter.com/0xRaindrop/status/864704956116254720

23 / 29

https://twitter.com/0xRaindrop/status/864704956116254720


FSB step 1: change phone name

24 / 29



FSB step 2: pair BMW with phone

25 / 29



FSB step 3: profit

26 / 29



FSB example 2

27 / 29



FSB example 3

28 / 29



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/06-lab.html

29 / 29

http://pwnthybytes.ro/unibuc_re/06-lab.html

