
Binary Reverse Engineering And Analysis
Course 7: Mitigations and Bypasses

Caragea Radu

March 30, 2021

1 / 26



Recap

Last time we studied ROP and ASLR

Some information regarding the GOT

Stack buffer overflows are pretty dangerous.

What mitigations are available?

2 / 26



Today

Preventing return address overflows (SSP)

How dynamic linking works at runtime

More advanced mitigations

3 / 26



Preventing stack buffer overflows

Linux (gcc) and Windows (cl) adopt similar strategies

Buffers are moved to the bottom of the stack frame

A magic value is placed after all allocated variables and buffers

Before returning, the magic value is checked

Called: cookie or canary or guard

4 / 26



Stack smashing protector (Linux)

On Linux: compile with ‘-fstack-protector‘ (off by default)
5 / 26



Stack smashing protector (Windows)

On Windows: compile with ‘/GS‘ (on by default)
6 / 26



SSP pros and cons

On Linux, the original value is at a hard-to-determine address

On Windows, the original value is in the .data section

However, it is xored with rsp for added security

In both cases, there are scenarios where it does not protect from overflows.
Which?

7 / 26



SSP pros and cons

On Linux, the original value is at a hard-to-determine address

On Windows, the original value is in the .data section

However, it is xored with rsp for added security

In both cases, there are scenarios where it does not protect from overflows.
Which?

7 / 26



SSP pros and cons

On Linux, the original value is at a hard-to-determine address

On Windows, the original value is in the .data section

However, it is xored with rsp for added security

In both cases, there are scenarios where it does not protect from overflows.
Which?

7 / 26



The end of buffer overflows?

Maybe... but not really.

Information leaks (very common)

Buffer underflows can also occur

Out-of-bounds access (very common)

Relative read/write (jump over the cookie)
Absolute read/write

Heap abuse (dynamic allocation)

8 / 26



The end of buffer overflows?

Maybe... but not really.

Information leaks (very common)

Buffer underflows can also occur

Out-of-bounds access (very common)

Relative read/write (jump over the cookie)
Absolute read/write

Heap abuse (dynamic allocation)

8 / 26



RELRO mitigation intro

Protects the GOT table

To understand why, let’s dig into dynamic linking

Through this mitigation we’ll learn a new exploitation avenue

9 / 26



Dynamic linking (1/3)

A program function calls puts(”Hello, world”)

10 / 26



Dynamic linking (2/3)

Puts() is actually a stub that uses a pointer from another table

11 / 26



Dynamic linking (2/3)

12 / 26



Dynamic linking (3/3)

Global Offset Table entries (filled in at runtime)

13 / 26



Symbol resolution algorithm 1/3

The GOT is initially almost empty (lazy loading)

Only the entry at index 0 is filled in

Index 0: generic resolver function in ld-linux

14 / 26



Symbol resolution algorithm 2/3

All other entries are stubs that call the resolver

15 / 26



Symbol resolution algorithm 3/3

Stub only called once (the first time)
Resolver replaces the stub with a direct pointer

16 / 26



But why do we care?

The GOT is modifiable by the loader

The GOT is also a potential target for overwrite

Exploit a relative arbitrary write from a global buffer

Exploit an absolute arbitrary write

17 / 26



RELRO mitigation mechanism

Resolve everything at the start
Set memory permissions to read only
Read Only RELocations

18 / 26



RELRO Tradeoff

The loader needs to do extra work at program startup

But the loader needs to do less work afterwards

And the program is more secure without much effort

In practice, GOT tables are still overwritten (but in libraries)

19 / 26



RELRO Tradeoff

The loader needs to do extra work at program startup

But the loader needs to do less work afterwards

And the program is more secure without much effort

In practice, GOT tables are still overwritten (but in libraries)

19 / 26



Write What Where

https://cwe.mitre.org/data/definitions/123.html

Very Powerful! Overwrite anything

Using the GOT table:

Overwrite free.got with system.got
Overwrite puts.got with printf.got
Overwrite stack-modifying functions with gets.got

Endless possibilities

20 / 26

https://cwe.mitre.org/data/definitions/123.html


PIE mitigation

The final ‘nail’ in the coffin

The main executable is compiled as a library

Position Independent Executable

Kills off many vulnerability classes

Cost: 20-25% performance penalty

Believe it or not, it can be bypassed in many situations

21 / 26



PIE mitigation

The final ‘nail’ in the coffin

The main executable is compiled as a library

Position Independent Executable

Kills off many vulnerability classes

Cost: 20-25% performance penalty

Believe it or not, it can be bypassed in many situations

21 / 26



Without PIE

22 / 26



With PIE

23 / 26



Compiler defaults

PIE is on by default (Linux, Windows)

RELRO is off by default on Linux

RELRO is on by default on Windows

SSP is off by default on Linux

SSP (as GS) is on by default on Windows

24 / 26



Compiler defaults

PIE is on by default (Linux, Windows)

RELRO is off by default on Linux

RELRO is on by default on Windows

SSP is off by default on Linux

SSP (as GS) is on by default on Windows

24 / 26



Compiler defaults

PIE is on by default (Linux, Windows)

RELRO is off by default on Linux

RELRO is on by default on Windows

SSP is off by default on Linux

SSP (as GS) is on by default on Windows

24 / 26



Final remarks

Some ASLR bypass is still needed (and usually found)

All libraries/dependencies become the new attack surface

Only works if you have the EXACT binaries at hand

GOT tables are just a particular case of function pointers

There are no libraries without read/write function pointers

25 / 26



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/07-lab.html

26 / 26

http://pwnthybytes.ro/unibuc_re/07-lab.html

