
Binary Reverse Engineering And Analysis
Course 8: Heap Exploitation on Linux

Caragea Radu

February 12, 2021

1 / 16



Recap

Stack Smashing Protection

Dynamic linking, the GOT and RELRO

Write-What-Where conditions

2 / 16



Today

What can still be exploited?

A brief example of modern (2018-2019) vulnerabilities

Highlight the exploitation method

3 / 16



Heap and allocators

Compilers do a good job protecting the stack

However, the heap is less hardened

Many types of allocators exist:

Glibc: ptmalloc2 with or without tcache
Android: dlmalloc / jemalloc
Windows: segment heap or NT heap

Code is always being added

Sometimes, without thinking about security

4 / 16



Heap and allocators

Compilers do a good job protecting the stack

However, the heap is less hardened

Many types of allocators exist:

Glibc: ptmalloc2 with or without tcache
Android: dlmalloc / jemalloc
Windows: segment heap or NT heap

Code is always being added

Sometimes, without thinking about security

4 / 16



Heap and allocators

Compilers do a good job protecting the stack

However, the heap is less hardened

Many types of allocators exist:

Glibc: ptmalloc2 with or without tcache
Android: dlmalloc / jemalloc
Windows: segment heap or NT heap

Code is always being added

Sometimes, without thinking about security

4 / 16



Case study: Ubuntu 18.04

New (rushed) features in the allocator

Horrendous bugs in everyone’s systems

Let’s investigate just one

5 / 16



Malloc/Free

Any dynamic memory allocation will ultimately use malloc

Malloc, in turn, uses the heap segment. How?

Free: keeps lists of chunks for later reuse (by size)

Malloc: retrieves an older chunk or creates a new one

6 / 16



Malloc/Free

Any dynamic memory allocation will ultimately use malloc

Malloc, in turn, uses the heap segment. How?

Free: keeps lists of chunks for later reuse (by size)

Malloc: retrieves an older chunk or creates a new one

6 / 16



Initial state of Heap segment

7 / 16



Allocations

8 / 16



Allocations

8 / 16



Allocations

8 / 16



Allocations

8 / 16



Allocations

8 / 16



Free and the free list

9 / 16



Free and the free list

9 / 16



Free and the free list

9 / 16



Possible attacks

In large code bases, bugs inevitably surface

Static code analyzers cannot always discover misuses

Crashes are sometimes found but dismissed as unexploitable

Let’s see what happens when a pointer gets freed two times by accident

10 / 16



Double free attack (before corruption)

11 / 16



Double free attack (var 1)

12 / 16



Double free attack (var 2)

12 / 16



Double free attack (var 2)

12 / 16



Double free attack (var 2)

12 / 16



Double free attack (var 2)

12 / 16



Double free attack (var 2)

12 / 16



Double free attack (var 2)

12 / 16



Write What Where

https://cwe.mitre.org/data/definitions/123.html

Hello, old friend!

13 / 16

https://cwe.mitre.org/data/definitions/123.html


Aside

Bugs depend on allocator implementation and checks

The more checks, the slower the allocator

Before Ubuntu 18.04

this bug is exploitable but some asserts must be passed

After Ubuntu 18.04 this bug is still exploitable but some asserts must be passed

14 / 16



Aside

Bugs depend on allocator implementation and checks

The more checks, the slower the allocator

Before Ubuntu 18.04 this bug is exploitable but some asserts must be passed

After Ubuntu 18.04

this bug is still exploitable but some asserts must be passed

14 / 16



Aside

Bugs depend on allocator implementation and checks

The more checks, the slower the allocator

Before Ubuntu 18.04 this bug is exploitable but some asserts must be passed

After Ubuntu 18.04 this bug is still exploitable but some asserts must be passed

14 / 16



Other heap vulnerabilities

Buffer used after free: similar metadata corruption possible

Buffer not initialized properly: data can ”resurface” (info leak)

Many other allocator-specific vulnerabilities

15 / 16



Practice

Any Questions?

http://pwnthybytes.ro/unibuc_re/08-lab.html

16 / 16

http://pwnthybytes.ro/unibuc_re/08-lab.html

